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With the aid of a novel S-methyl-S-2-pyridyl-sulfoximine (MPyS) directing group (DG), the unactivated primary 5-C(sp®)—H bond of MPyS-N-
amides oxidizes at room temperature. The catalytic conditions are applicable to the diacetoxylation of primary 3,5'-C(sp®)—H bonds, and the
carboxylic acid solvent is pivotal in the formation of the C—0 bond. The MPyS-DG cleaves from the oxidation products and is recovered. This
method provides convenient access to a,o’-disubstituted-/3-hydroxycarboxylic acids.

Transition-metal-catalyzed, directing-group (DG) as-
sisted oxidation of an unactivated C(sp®)—H bond has
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emerged as an elegant and powerful tool for the construc-
tion of chemo- and regioselective C—O bonds in aliphatic
chains." This unique strategy allows the creation of a hydroxy
functional group within a complex molecule, therefore giving
it broad application in synthetic chemistry.> However, owing
to the high bond dissociation energy of the C(sp*)—H bond
and lack of s-participation, direct oxidation of an unacti-
vated alkane C—H bond is a challenging problem.'> Among
the known processes for C—H bond oxidation,> > the
inherently reactive and relatively weaker alkane C—H bonds
are more amenable to oxidation.® Sanford and co-workers
demonstrated an elegant approach for the transformable
oximes or pyridine-directed 1°/2°-C(sp®)—H oxidation of
alkanes (eq 1). The Yu group employed a chiral oxazoline
to accomplish the otherwise challenging diastereoselective
oxidation of a methyl group (eq 1).” However, the use of
nonremovable and nonmodifiable DGs limit the applications
of alkane C—H oxidation methods to synthetic chemistry.’
Therefore, the development of a new synthetic pathway for the
direct oxidation of C(sp®)—H bonds with the aid of reusable
DG under mild catalytic conditions is highly desirable.!>®
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A recent report by Simmons and Hartwig describes a
conceptually interesting method for the primary y-C—H
functionalization of aliphatic alcohols/ketones in the pre-
sence of an iridium-phenanthroline catalyst and a dihydri-
dosilane reagent at 120 °C.° We recently reported our preli-
minary observation on the Pd-catalyzed direct 1°-5-C(sp”)—
H acetoxylation of S-methyl-S-phenylsulfoximine-N-amide
at 100 °C.'"° This result inspires us to envision a new
S-methyl-S-2-pyridylsulfoximine (MPyS)'' bidented
reusable DG to carry out the oxidation of an alkane
C—H bond. Presumably the facile coordination of
pyridyl'? and sulfoximine nitrogens of MPyS-DG to a
Pd-catalyst would trigger activating the S-C(sp>)—H
bond of MPyS-N-amides with the involvement of a
[5,5]-fused-Pd-bridged system (eq 2), a concept that was
first reported by Daugulis.!*® Moreover, the oxidation
of C(sp®)—H bonds of amides and the use of a bicoor-
dinated DG for the C—H oxidation of alkane are rare.>"
Recently, Chen et al. demonstrated the picolinamide-
directed alkoxylation of a C(sp*)—H bond at 110 °C.'?
We report herein a Pd-catalyzed highly selective direct
acetoxylation of a 1°-8-C(sp’)—H bond of MPyS-N-
amides at room temperature (rt).

Scheme 1. Acetoxylation of N-Pivaloyl-MPyS
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To probe this hypothesis, compound 2a was exposed to
catalytic conditions comprising of various combinations of
Pd-catalysts, oxidants, and solvents.'* The reaction of 2a
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(0.5 mmol) in the presence of Pd(OAc), (5 mol %) and
PhI(OACc), (0.75 mmol) in AcOH (1.50 mL) was found to
be optimal.14 Other N,N- or N,S-bicoordinated direct-
ing groups,'® such as 8-aminoquinoline (8-AQ),'¢b<
2-methylthioaniline (2-MTA),'* and 2-pyridin-ylmethyl-
amine (2-PMA)l6c in 5, 6, and 7, were found to be ineffec-
tive under the optimized conditions (Scheme 1).

To investigate the effect of the MPyS-DG for the
unactivated primary -C(sp®)—H oxidation, a wide variety
of MPyS-N-amides having a 1°-3-C—H bond were sub-
jected to the optimized catalytic conditions at rt. Table 1
summarizes the scope and limitations of these studies. The
desired monoacetoxylation product 3a was obtained in
80% yield from 2a in 14 h. The B-C(sp’)—H bond was
exclusively oxidized leaving the y-C(sp*)—H unaffected,'’
producing 3b in 82% yield. Interestingly, chloro and
bromo substitutions on an aliphatic chain survived, deli-
vering 3¢ and 3d effectively; in contrast oxidation of 5.,5'-
dichloro containing amide 2e proceeded sluggishly even at
60 °C. The 2°-benzylic 8-C(sp’)—H bonds and the more
reactive aromatic C—H bonds were inert to the reaction
conditions; the desired oxidation products 3f—j were furn-
ished in good yields. Functional groups on the aromatic
ring, including nitro (3g), bromo (3h), and ether (3i), were
unaffected. Amides derived from 2-methylcyclohexane
carboxylic acids underwent fS-acetoxylation successfully
(3k). The ester functional group did not affect the reaction
productivity, furnishing 3lin an appreciable yield in Ac,O.
Pleasingly, a good amount of 3,'-diacetoxylation product
4aresulted from 3a, when the reaction was performed in an
AcOH and Ac,O mixture.

The catalytic conditions were next surveyed to examine the
oxidation of 8-C(sp>)—H bonds of MPyS-N-amides bearing
a-C—H bonds. In general, the a-C—H is prone to undergo
the /—H elimination with the involvement of either the
Saegusa-type process or the cyclopalladated intermediates.'”
However, the decrease in a-substitutions causing a sluggish
reaction and poor product yield was observed. To overcome
this problem, oxidations of 2m—2o were therefore conducted
at 60 °C. Moderate to good yields of the desired 5-C—H
acetoxylated products 3m—3o were isolated. The -H elim-
ination products, possibly obtained from the cyclopalladated
intermediates, were not detected.'”

The f,4'-dihydroxycarboxylic acids are valuable precur-
sors to the functionalized cyclic carbonates.'®* These cyclic
carbonate monomers are used for the production of

(15) Oxidations of the 1°-acidic-a-H of 8 and the 1°-y-H of 9 were
unsuccessful.
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Table 1. Acetoxylation of 1°-8-C(sp’)—H Bonds of Amides®”
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AcOH (1.5 mL), rt
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CO, Me
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57%; (39%) 48 h 47%; (26%) 60h  60%; {28%) 32 h%8

Me. f.r Me. .l.'

ﬂ
~S= S= Ph
)j‘*Me N '”j-v
\ N AcO ACO AcO

71%; (1 2%), 20 h® 40%; (51%)‘ 60 h® 42%; [50%), 48 h°

“Reaction conditions: 2 (0.5 mmol), Pd(OAc), (5mol %), PhI(OAc),
(0.75 mmol), AcOH (1.5 mL) at rt. * Isolated yields. Recovered starting
material is indicated in parentheses.  Reaction was carried out at 60 °C.
92¢ (100 mg) was employed. “Bulk scale reaction of 2j (1.50 g) was
performed.” 10 mol % of Pd(OAc), was introduced; Ac,O was used as
solvent. ¢ Mixture of AcOH and Ac,O (1:1) was used.

biodegradable and biocompatible polymers.'®® Hydrolysis
of 4a would generate f3,3'-dihydroxycarboxylic acids. To
obtain 4a from 2a, the diacetoxylation of the primary
B.,8-C(sp*)—H bonds of amides was therefore investigated.
Excellent conversion of 2a to 3a and 4a was observed under
the modified conditions [Pd(OAc), (10 mol %), PhI(OAc),
(3.0 equiv) in AcOH/Ac,O at 70 °C] as shown in Table 2.
Following this method, 4b, 4¢, 4h, and 4j were isolated in
56—78% yields.

It was speculated that the acetate moiety from the Phl-
(OAc), or AcOH was involved in the formation of the
C—0 bond. To study the role of the oxidant in this
transformation, 2a was reacted with PhI(OPiv), in the
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Table 2. Direct j, ﬁ’ Di-acetoxylation of Primary f,5'-C(sp’)—H
Bonds of Amides®”

Pd(OAc); (10 mol %) 0O 0
Me~§’,N%R PhI(OAC), (3equiv) Me~ds qu R
4, : ACOHAG,0 (1.5 ml) Q, N Ac0 B

?0 °C

Me\" )ﬂ Me.." )I\JQMe Me\ ,&jé\m

AGO OAc , ACO OAc ACO OAc

54%: (36%) 20 h 78%: (14%) 24 h 56% (34%) 20 h

Me\S"‘N)jqo Me\-‘f )I\IG\Ph

, AcO OAc , ACO OAc

73%: (21%; 26 h 64%: (27%). 28 h

“Reaction conditions: 2 (0.25 mmol), Pd(OAc), (10 mol %), Phl-
(OAc), (0.75 mmol), AcOH/Ac,O (1:1, 1.5 mL) at 70 °C. ®Isolated
yields. Yield of the monoacetoxylation product is given in parentheses.

presence of Pd(OAc), in AcOH. No trace of the —OPiv
containing C—H oxidation product was detected by 'H
NMR; rather 3a was exclusively formed in 81% yield
(entry 1, Table 3). In contrast, this reaction did not proceed
in the absence of oxidant.'* The effect of various carboxylic
acid solvents was next examined. The carboxylate groups

Table 3. Acyloxylation of 1°-8-C(sp>)—H Bond of Amides”

PAOAC), (5mol %)  Me.s . Me

CS*N%MG PhI(OCOR"), (1.5 equiv) CS‘N)\&Me
N\

R2COOH, rt R?0CO
310
t R? yield
entry R! R? (h)  (major)  3/10 (%)°
1 t-Bu  CHj 30 CH, 3a 81(13)
2 CH; CDs 12 CD; 10a  68(20)
3 CH; Et 32 Et 10b  59(26)
4 CH; n-Pr 30 n-Pr 10c 58(21)%¢
5 CH; iso-Pr 26 iso-Pr 10d 54(30)%¢

“ Reaction conditions: 2a (100 mg, 0.42 mmol), Pd(OAc), (5 mol %),
PhI(OAc), (0.63 mmol), R’COOH (1.25 mL) at rt. ®Isolated yields.
Yield of the recovered 2a shown in parentheses. “CD;COOD was used
as solvent. ¢ Reaction performed at 65 °C. € Yield of the nonseparable
mixture of 10 and 2a.

CD;COO—, EtCOO—, n-PrCOO—, and iso-PrCOO—
from the corresponding carboxylic acids were successfully
incorporated into the oxidation products, producing 10a—d
in good yields (entries 2—5).°% It appeared that the

(18) (a) Sanders, D. P.; Fukushima, K.; Coady, D. J.; Nelson, A.;
Fujiwara, M.; Yasumoto, M.; Hedrick, J. L. J. Am. Chem. Soc. 2010,
132, 14724. (b) Jerome, C.; Lecomte, P. Adv. Drug Delivery Rev. 2008,
60, 1056.

(19) (a) Sehnal, P.; Taylor, R. J. K.; Fairlamb, 1. J. S. Chem. Rev.
2010, /10, 824. (b) See also ref 1d.
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Scheme 2. Proposed Catalytic Cycle
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carboxylic acid solvent was responsible for the C—O bond
formation, while the oxidant kept the catalytic cycle active.

Based on the discussed Pd-catalyzed alkane C—H oxida-
tion and the results of the 5-C(sp®)—H acyloxylation shown
in Table 3, the catalytic cycle in Scheme 2 is proposed with
the involvement of the Pd" and Pd" species.'” The biche-
lated Pd" species, generated in situ via the chelation of
pyridine and the sulfoximine N-atom to Pd(OAc),, activates
the 1°-5-C(sp®)—H of MPyS-N-amide at rt and produces the
[5,5]-fused bicyclic cyclopalladated intermediate 11. Follow-
ing this, oxidation of the Pd"-species of 11 with PhI(OAc),
or PhI(OCOR),, obtained through the ligand exchange
between PhI(OAc), and carboxylic acid, delivers the Pd"
species 12.°! Finally reductive elimination of 12 delivers

Table 4. Recovery of the MPyS Directing Group®™”

Qo MeQ s O Me o OH
| x S:N 2(N) HCI C( NH
/N3 AcO 50 OC t(h) 13 R1 R2
t yield yield
entry 3 (h) of 1 of 13
1 3a,R' =R?=Me 3 87 88 ($215/1 g)
2 3j, R' =Bn, R>=Me 6 87 90
3 3k, R'--R? = cyclohexyl 5 89 91

“Reaction conditions: 3 (0.25 mmol), 1 mL of 2 N HCI at 50 °C.
bTsolated yields. Bn = benzyl.

the desired fB-acyloxylated product 3 and the active Pd"
species. Alternatively the oxidation could also proceed with
the involvement of a Pd(III) intermediate.*
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J. Am. Chem. Soc. 2009, 131, 11234,
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2662. (b) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502.
(24) CAS No for 14a: 4835-90-9; Aldrich Catalogue 2011—-2012.
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Grobbee, D. E.; Cass, A.; Chalmers, J.; Perkovic, V. Lancet 2010, 375,
1875. (b) Steiner, G. Diabetes Vasc. Dis. Res. 2007, 4, 368.
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Facile cleavage of the directing group from the oxidation
products and the successful recovery of the MPyS-moiety
would broaden the synthetic versatility of this strategy.' >
Pleasingly, the MPyS-containing amide 3a was hydro-
lyzed with HCI (2 N) at 50 °Cin 3 h (entry 1, Table 4). The
desired 3-hydroxy-2,2-dimethyl-propanoic acid 13a (215
$/1 g; Aldrich)®* was extracted from the crude reaction
mixture in 88% yield. Following this procedure, various
pB-hydroxycarboxylic acids 13j and 13k were obtained with
ease (entries 2 and 3). The precious MPyS-DG was readily
isolated from the acidic mother liquor in excellent yields.'*

Finally, potential synthetic application of this strategy
was demonstrated performing Pd-catalyzed unactivated
primary B-C(sp’)—H acetoxylation of drug derivatives
(Figure 1). The fibrate-based drugs gemfibrozil and clofi-
brate are effective in reducing the cardiovascular risk
factors associated with type 2 diabetics.>> Gratifyingly,
reaction of MPyS-bearing amides derived from gemfibro-
zil and clofibrate, under the optimized conditions, furn-
ished the desired 8-C(sp’)—H acetoxylation products 14
and 15 in 66% and 51% yield, respectively.'*

\\/ \\/

S0 ok

14, 66% ( 16%) 36h 15, 51% (42%); 24 h

Figure 1. 1°-3-C(sp*)—H Acetoxylation of drug derivatives.

In conclusion, we have developed a novel MPyS directing
group that is functional in the highly selective acetoxylation
of the unactivated 1°-5-C(sp>)—H of MPyS-N-amides at rt.
The catalytic conditions are able to tolerate various func-
tional groups with a broad reaction scope, making them
suitable for use in the synthesis of drug derivatives. The
process also allows the formation of the 3,5’ -diacetoxylation
products. The facile cleavage and easy recovery of the robust
MPyS-DG makes the present protocol highly useful. Gen-
eralization of MPyS-DG for other C—H functionaliza-
tions, unraveling of mechanistic details, diastereoselective
C(sp®)—H functionalizations, and investigation of the novel
synthetic applications are being actively pursued.

Acknowledgment. This research was supported by the
DST (Grant No. SR/S1/0C-34/2009). R.K.R.and M.R.Y.
thank CSIR, India for fellowship. We thank Mr. P.
Sanphui (University of Hyderabad) for the X-ray crystal-
lographic analysis.

Supporting Information Available. Detailed experimen-
tal procedures, spectra, and X-ray data. This material is
available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.

3727



