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ABSTRACT

With the aid of a novel S-methyl-S-2-pyridyl-sulfoximine (MPyS) directing group (DG), the unactivated primary β-C(sp3)�H bond of MPyS-N-
amides oxidizes at room temperature. The catalytic conditions are applicable to the diacetoxylation of primary β,β0-C(sp3)�H bonds, and the
carboxylic acid solvent is pivotal in the formation of the C�O bond. The MPyS-DG cleaves from the oxidation products and is recovered. This
method provides convenient access to R,R0-disubstituted-β-hydroxycarboxylic acids.

Transition-metal-catalyzed, directing-group (DG) as-
sisted oxidation of an unactivated C(sp3)�H bond has

emerged as an elegant and powerful tool for the construc-
tion of chemo- and regioselective C�O bonds in aliphatic
chains.1This unique strategyallows the creationofahydroxy
functional groupwithin a complexmolecule, therefore giving
it broad application in synthetic chemistry.2However, owing
to the high bond dissociation energy of the C(sp3)�H bond
and lack of π-participation, direct oxidation of an unacti-
vated alkane C�Hbond is a challenging problem.1b Among
the known processes for C�H bond oxidation,3�5 the
inherently reactive and relatively weaker alkane C�Hbonds
are more amenable to oxidation.6 Sanford and co-workers
demonstrated an elegant approach for the transformable
oximes or pyridine-directed 1�/2�-C(sp3)�H oxidation of
alkanes (eq 1).5e,j The Yu group employed a chiral oxazoline
to accomplish the otherwise challenging diastereoselective
oxidation of a methyl group (eq 1).5i However, the use of
nonremovable and nonmodifiable DGs limit the applications
of alkane C�H oxidation methods to synthetic chemistry.7

Therefore, thedevelopmentof anewsyntheticpathway for the
direct oxidation of C(sp3)�H bonds with the aid of reusable
DG under mild catalytic conditions is highly desirable.1b,8
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A recent report by Simmons and Hartwig describes a
conceptually interesting method for the primary γ-C�H
functionalization of aliphatic alcohols/ketones in the pre-
sence of an iridium-phenanthroline catalyst and a dihydri-
dosilane reagent at 120 �C.9 We recently reported our preli-
minary observation on the Pd-catalyzed direct 1�-β-C(sp3)�
H acetoxylation of S-methyl-S-phenylsulfoximine-N-amide
at 100 �C.10 This result inspires us to envision a new
S-methyl-S-2-pyridylsulfoximine (MPyS)11 bidented
reusable DG to carry out the oxidation of an alkane
C�H bond. Presumably the facile coordination of
pyridyl12 and sulfoximine nitrogens of MPyS-DG to a
Pd-catalyst would trigger activating the β-C(sp3)�H
bond of MPyS-N-amides with the involvement of a
[5,5]-fused-Pd-bridged system (eq 2), a concept that was
first reported by Daugulis.12c Moreover, the oxidation
of C(sp3)�H bonds of amides and the use of a bicoor-
dinated DG for the C�H oxidation of alkane are rare.5f

Recently, Chen et al. demonstrated the picolinamide-
directed alkoxylation of a C(sp3)�H bond at 110 �C.13

We report herein a Pd-catalyzed highly selective direct
acetoxylation of a 1�-β-C(sp3)�H bond of MPyS-N-
amides at room temperature (rt).

To probe this hypothesis, compound 2a was exposed to
catalytic conditions comprisingof various combinations of
Pd-catalysts, oxidants, and solvents.14 The reaction of 2a

(0.5 mmol) in the presence of Pd(OAc)2 (5 mol %) and
PhI(OAc)2 (0.75 mmol) in AcOH (1.50 mL) was found to
be optimal.14 Other N,N- or N,S-bicoordinated direct-
ing groups,16 such as 8-aminoquinoline (8-AQ),16a,b,e

2-methylthioaniline (2-MTA),16e and 2-pyridin-ylmethyl-
amine (2-PMA)16c in 5, 6, and 7, were found to be ineffec-
tive under the optimized conditions (Scheme 1).
To investigate the effect of the MPyS-DG for the

unactivated primary β-C(sp3)�Hoxidation, awide variety
of MPyS-N-amides having a 1�-β-C�H bond were sub-
jected to the optimized catalytic conditions at rt. Table 1
summarizes the scope and limitations of these studies. The
desired monoacetoxylation product 3a was obtained in
80% yield from 2a in 14 h. The β-C(sp3)�H bond was
exclusively oxidized leaving the γ-C(sp3)�H unaffected,15

producing 3b in 82% yield. Interestingly, chloro and
bromo substitutions on an aliphatic chain survived, deli-
vering 3c and 3d effectively; in contrast oxidation of β,β0-
dichloro containing amide 2e proceeded sluggishly even at
60 �C. The 2�-benzylic β-C(sp3)�H bonds and the more
reactive aromatic C�H bonds were inert to the reaction
conditions; the desired oxidation products 3f�jwere furn-
ished in good yields. Functional groups on the aromatic
ring, including nitro (3g), bromo (3h), and ether (3i), were
unaffected. Amides derived from 2-methylcyclohexane
carboxylic acids underwent β-acetoxylation successfully
(3k). The ester functional group did not affect the reaction
productivity, furnishing 3l in an appreciable yield inAc2O.
Pleasingly, a good amount of β,β0-diacetoxylation product
4a resulted from 3a, when the reactionwas performed in an
AcOH and Ac2O mixture.
The catalytic conditionswere next surveyed to examine the

oxidation of β-C(sp3)�Hbonds ofMPyS-N-amides bearing
R-C�H bonds. In general, the R-C�H is prone to undergo
the β�H elimination with the involvement of either the
Saegusa-type process or the cyclopalladated intermediates.17

However, the decrease in R-substitutions causing a sluggish
reaction and poor product yield was observed. To overcome
this problem, oxidations of 2m�2owere therefore conducted
at 60 �C. Moderate to good yields of the desired β-C�H
acetoxylated products 3m�3o were isolated. The β-H elim-
ination products, possibly obtained from the cyclopalladated
intermediates, were not detected.17a

The β,β0-dihydroxycarboxylic acids are valuable precur-
sors to the functionalized cyclic carbonates.18a These cyclic
carbonate monomers are used for the production of

Scheme 1. Acetoxylation of N-Pivaloyl-MPyS
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biodegradable and biocompatible polymers.18b Hydrolysis
of 4a would generate β,β0-dihydroxycarboxylic acids. To
obtain 4a from 2a, the diacetoxylation of the primary
β,β0-C(sp3)�H bonds of amides was therefore investigated.
Excellent conversion of 2a to 3a and 4a was observed under
the modified conditions [Pd(OAc)2 (10 mol %), PhI(OAc)2
(3.0 equiv) in AcOH/Ac2O at 70 �C] as shown in Table 2.
Following this method, 4b, 4c, 4h, and 4j were isolated in
56�78% yields.
It was speculated that the acetate moiety from the PhI-

(OAc)2 or AcOH was involved in the formation of the
C�O bond. To study the role of the oxidant in this
transformation, 2a was reacted with PhI(OPiv)2 in the

presence of Pd(OAc)2 in AcOH. No trace of the �OPiv
containing C�H oxidation product was detected by 1H
NMR; rather 3a was exclusively formed in 81% yield
(entry 1,Table 3). In contrast, this reaction did not proceed
in the absenceofoxidant.14The effect of various carboxylic
acid solvents was next examined. The carboxylate groups

CD3COO�, EtCOO�, n-PrCOO�, and iso-PrCOO�
from the corresponding carboxylic acids were successfully
incorporated into the oxidation products, producing 10a�d

in good yields (entries 2�5).5d,i It appeared that the

Table 1. Acetoxylation of 1�-β-C(sp3)�H Bonds of Amidesa,b

aReaction conditions: 2 (0.5mmol), Pd(OAc)2 (5mol%), PhI(OAc)2
(0.75 mmol), AcOH (1.5 mL) at rt. b Isolated yields. Recovered starting
material is indicated in parentheses. cReaction was carried out at 60 �C.
d 2e (100 mg) was employed. eBulk scale reaction of 2j (1.50 g) was
performed. f 10 mol % of Pd(OAc)2 was introduced; Ac2O was used as
solvent. gMixture of AcOH and Ac2O (1:1) was used.

Table 2. Direct β,β0-Di-acetoxylation of Primary β,β0-C(sp3)�H
Bonds of Amidesa,b

aReaction conditions: 2 (0.25 mmol), Pd(OAc)2 (10 mol %), PhI-
(OAc)2 (0.75 mmol), AcOH/Ac2O (1:1, 1.5 mL) at 70 �C. b Isolated
yields. Yield of the monoacetoxylation product is given in parentheses.

Table 3. Acyloxylation of 1�-β-C(sp3)�H Bond of Amidesa

entry R1 R2

t

(h)

R2

(major) 3/10

yield

(%)b

1 t-Bu CH3 30 CH3 3a 81(13)

2 CH3 CD3
c 12 CD3 10a 68(20)

3 CH3 Et 32 Et 10b 59(26)

4 CH3 n-Pr 30 n-Pr 10c 58(21)d,e

5 CH3 iso-Pr 26 iso-Pr 10d 54(30)d,e

aReaction conditions: 2a (100mg, 0.42mmol), Pd(OAc)2 (5mol%),
PhI(OAc)2 (0.63 mmol), R2COOH (1.25 mL) at rt. b Isolated yields.
Yield of the recovered 2a shown in parentheses. cCD3COOD was used
as solvent. dReaction performed at 65 �C. eYield of the nonseparable
mixture of 10 and 2a.

(18) (a) Sanders, D. P.; Fukushima, K.; Coady, D. J.; Nelson, A.;
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carboxylic acid solvent was responsible for the C�O bond
formation, while the oxidant kept the catalytic cycle active.
Based on the discussed Pd-catalyzed alkane C�H oxida-

tion and the results of the β-C(sp3)�H acyloxylation shown
in Table 3, the catalytic cycle in Scheme 2 is proposed with
the involvement of the PdII and PdIV species.19 The biche-
lated PdII species, generated in situ via the chelation of
pyridine and the sulfoximineN-atom to Pd(OAc)2, activates
the 1�-β-C(sp3)�HofMPyS-N-amide at rt andproduces the
[5,5]-fused bicyclic cyclopalladated intermediate 11. Follow-
ing this, oxidation of the PdII-species of 11 with PhI(OAc)2
or PhI(OCOR)2, obtained through the ligand exchange
between PhI(OAc)2 and carboxylic acid, delivers the PdIV

species 12.20,21 Finally reductive elimination of 12 delivers

the desired β-acyloxylated product 3 and the active PdII

species. Alternatively the oxidation could also proceed with
the involvement of a Pd(III) intermediate.22

Facile cleavageof the directing group from the oxidation
products and the successful recovery of the MPyS-moiety
would broaden the synthetic versatility of this strategy.16b,23

Pleasingly, the MPyS-containing amide 3a was hydro-
lyzed withHCl (2N) at 50 �C in 3 h (entry 1, Table 4). The
desired 3-hydroxy-2,2-dimethyl-propanoic acid 13a (215
$/1 g; Aldrich)24 was extracted from the crude reaction
mixture in 88% yield. Following this procedure, various
β-hydroxycarboxylic acids 13j and 13k were obtained with
ease (entries 2 and 3). The precious MPyS-DG was readily
isolated from the acidic mother liquor in excellent yields.14

Finally, potential synthetic application of this strategy
was demonstrated performing Pd-catalyzed unactivated
primary β-C(sp3)�H acetoxylation of drug derivatives
(Figure 1). The fibrate-based drugs gemfibrozil and clofi-
brate are effective in reducing the cardiovascular risk
factors associated with type 2 diabetics.25 Gratifyingly,
reaction of MPyS-bearing amides derived from gemfibro-
zil and clofibrate, under the optimized conditions, furn-
ished the desired β-C(sp3)�H acetoxylation products 14
and 15 in 66% and 51% yield, respectively.14

In conclusion, we have developed a novelMPyS directing
group that is functional in the highly selective acetoxylation
of the unactivated 1�-β-C(sp3)�HofMPyS-N-amides at rt.
The catalytic conditions are able to tolerate various func-
tional groups with a broad reaction scope, making them
suitable for use in the synthesis of drug derivatives. The
process alsoallows the formationof theβ,β0-diacetoxylation
products.The facile cleavage andeasy recoveryof the robust
MPyS-DG makes the present protocol highly useful. Gen-
eralization of MPyS-DG for other C�H functionaliza-
tions, unraveling of mechanistic details, diastereoselective
C(sp3)�H functionalizations, and investigation of the novel
synthetic applications are being actively pursued.
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Scheme 2. Proposed Catalytic Cycle

Figure 1. 1�-β-C(sp3)�H Acetoxylation of drug derivatives.Table 4. Recovery of the MPyS Directing Groupa,b

entry 3

t

(h)

yield

of 1

yield

of 13

1 3a, R1 = R2 = Me 3 87 88 ($215/1 g)

2 3j, R1 = Bn, R2 = Me 6 87 90

3 3k, R1--R2 = cyclohexyl 5 89 91

aReaction conditions: 3 (0.25 mmol), 1 mL of 2 N HCl at 50 οC.
b Isolated yields. Bn = benzyl.
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