Pd(II)-Catalyzed Primary-C(sp³)—H Acyloxylation at Room Temperature

Raja K. Rit, M. Ramu Yadav, and Akhila K. Sahoo*

School of Chemistry, University of Hyderabad, Hyderabad, India akhilchemistry12@gmail.com; akssc@uohyd.ernet.in

Received June 7, 2012

With the aid of a novel S-methyl-S-2-pyridyl-sulfoximine (MPyS) directing group (DG), the unactivated primary β -C(sp³)–H bond of MPyS-*N*-amides oxidizes at room temperature. The catalytic conditions are applicable to the diacetoxylation of primary β , β' -C(sp³)–H bonds, and the carboxylic acid solvent is pivotal in the formation of the C–O bond. The MPyS-DG cleaves from the oxidation products and is recovered. This method provides convenient access to α , α' -disubstituted- β -hydroxycarboxylic acids.

Transition-metal-catalyzed, directing-group (DG) assisted oxidation of an unactivated C(sp³)-H bond has

(3) For oxidation of an sp³ C–H bond using a stoichiometric amount of Pd-catalyst, see: (a) Carr, K.; Saxton, H. M.; Sutherland, J. K. *J. Chem. Soc., Prekin Trans. 1* **1988**, 1599. (b) Baldwin, J. E.; Jones, R. H.; Najera, C.; Yus, M. *Tetrahedron* **1985**, *41*, 699. (c) Carr, K.; Sutherland, J. K. *J. Chem. Soc., Chem. Commun.* **1984**, 1227.

(4) Dangel, B. D.; Johnson, J. A.; Sames, D. J. Am. Chem. Soc. 2001, 123, 8149.

emerged as an elegant and powerful tool for the construction of chemo- and regioselective C-O bonds in aliphatic chains.¹ This unique strategy allows the creation of a hydroxy functional group within a complex molecule, therefore giving it broad application in synthetic chemistry.² However, owing to the high bond dissociation energy of the $C(sp^3)$ -H bond and lack of π -participation, direct oxidation of an unactivated alkane C–H bond is a challenging problem.^{1b} Among the known processes for C-H bond oxidation, $^{3-5}$ the inherently reactive and relatively weaker alkane C-H bonds are more amenable to oxidation.⁶ Sanford and co-workers demonstrated an elegant approach for the transformable oximes or pyridine-directed 1°/2°-C(sp3)-H oxidation of alkanes (eq 1).^{5e,j} The Yu group employed a chiral oxazoline to accomplish the otherwise challenging diastereoselective oxidation of a methyl group (eq 1).⁵ⁱ However, the use of nonremovable and nonmodifiable DGs limit the applications of alkane C-H oxidation methods to synthetic chemistry.⁷ Therefore, the development of a new synthetic pathway for the direct oxidation of $C(sp^3)$ -H bonds with the aid of reusable DG under mild catalytic conditions is highly desirable.^{1b,8}

ORGANIC LETTERS 2012 Vol. 14, No. 14 3724–3727

⁽¹⁾ For reviews on sp³ C-H functionalization, see: (a) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. **2011**, *50*, 3362. (b) Li, H.; Li, B. J.; Shi, Z. J. Catal. Sci. Technol. **2011**, *1*, 191. (c) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.—Eur. J. **2010**, *16*, 2654. (d) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. **2009**, *38*, 3242. (e) Dick, A. R.; Sanford, M. S. Tetrahedron **2006**, *62*, 2439. (f) Crabtree, R. H. J. Organomet. Chem. **2004**, *689*, 4083.

⁽²⁾ For sp³ C–H functionalization in organic synthesis, see: (a) Stang, E. M.; White, M. C. *Angew. Chem., Int. Ed.* **2011**, *50*, 2094. (b) Gutekunst, W. R.; Baran, P. S. *Chem. Soc. Rev.* **2011**, *40*, 1976 and references cited therein. (c) McMurray, L.; O'Hara, F.; Gaunt, M. J. *Chem. Soc. Rev.* **2011**, *40*, 1885. (d) Stang, E. M; White, M. C. *Nature* **2009**, *1*, 547. (e) Davies, H. M. L.; Manning, J. R. *Nature* **2008**, *451*, 417. (f) Godula, K.; Sames, D. *Science* **2006**, *312*, 67.

⁽⁵⁾ For Pd-catalyzed sp³ C-H oxidation, see: (a) He, G.; Zhao, Y.;
Zhang, S.; Lu, C.; Chen, G. J. Am. Chem. Soc. 2012, 134, 3. (b) Novak,
P.; Correa, A.; Donaire, J. G.; Martin, R. Angew. Chem., Int. Ed. 2011,
50, 12236. (c) Hou, X. F.; Wang, Y. N.; Schnetmann, I. G. Organome tallics 2011, 30, 6053. (d) Zhang, S.; Luo, F.; Wang, W.; Jia, X.; Hu, M.;
Cheng, J. Tetrahedron Lett. 2010, 51, 3317. (e) Neufeldt, S. R.; Sanford,
M. S. Org. Lett. 2009, 12, 532. (f) Reddy, B. V. S.; Reddy, L. R.; Corey,
E. J. Org. Lett. 2006, 8, 3391. (g) Wang, D. H.; Hao, X. S.; Wu, D. F.; Yu,
J. Q. Org. Lett. 2006, 8, 3387. (h) Lee, J. M.; Chang, S. Tetrahedron Lett.
2006, 47, 1375. (i) Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.;
Chen, X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J. Q. Angew.
Chem., Int. Ed. 2005, 44, 7420. (j) Desai, L. V.; Hull, K. L.; Sanford,
M. S. J. Am. Chem. Soc. 2004, 126, 9542.

^{(6) (}a) Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. **2011**, 133, 12584. (b) McNeill, E.; Du Bois, J. J. Am. Chem. Soc. **2010**, 132, 10202. (c) Chen, M. S.; White, M. C. Science **2010**, 327, 566. (d) Litvinas, N. D.; Brodsky, B. H.; Du Bois, J. Angew. Chem., Int. Ed. **2009**, 48, 4513. (e) Chen, K.; Richter, J. M.; Baran, P. S. J. Am. Chem. Soc. **2008**, 130, 7247.

⁽⁷⁾ Rousseau, G.; Breit, B. Angew. Chem., Int. Ed. 2011, 50, 2450.

⁽⁸⁾ Giri, R.; Chen, X.; Yu, J. Q. Angew. Chem., Int. Ed. 2005, 44, 2112.

A recent report by Simmons and Hartwig describes a conceptually interesting method for the primary γ -C-H functionalization of aliphatic alcohols/ketones in the presence of an iridium-phenanthroline catalyst and a dihydridosilane reagent at 120 °C.9 We recently reported our preliminary observation on the Pd-catalyzed direct $1^{\circ}-\beta$ -C(sp³)-H acetoxylation of S-methyl-S-phenylsulfoximine-N-amide at 100 °C.¹⁰ This result inspires us to envision a new S-methyl-S-2-pyridylsulfoximine (MPyS)¹¹ bidented reusable DG to carry out the oxidation of an alkane C-H bond. Presumably the facile coordination of pyridyl¹² and sulfoximine nitrogens of MPyS-DG to a Pd-catalyst would trigger activating the β -C(sp³)-H bond of MPyS-N-amides with the involvement of a [5,5]-fused-Pd-bridged system (eq 2), a concept that was first reported by Daugulis.^{12c} Moreover, the oxidation of $C(sp^3)$ -H bonds of amides and the use of a bicoordinated DG for the C-H oxidation of alkane are rare.^{5f} Recently, Chen et al. demonstrated the picolinamidedirected alkoxylation of a C(sp³)-H bond at 110 °C.¹³ We report herein a Pd-catalyzed highly selective direct acetoxylation of a $1^{\circ}-\beta$ -C(sp³)-H bond of MPyS-Namides at room temperature (rt).

Scheme 1. Acetoxylation of N-Pivaloyl-MPyS

To probe this hypothesis, compound 2a was exposed to catalytic conditions comprising of various combinations of Pd-catalysts, oxidants, and solvents.¹⁴ The reaction of 2a

(0.5 mmol) in the presence of $Pd(OAc)_2$ (5 mol %) and $PhI(OAc)_2$ (0.75 mmol) in AcOH (1.50 mL) was found to be optimal.¹⁴ Other *N*,*N*- or *N*,*S*-bicoordinated directing groups,¹⁶ such as 8-aminoquinoline (8-AQ),^{16a,b,e} 2-methylthioaniline (2-MTA),^{16e} and 2-pyridin-ylmethylamine (2-PMA)^{16c} in **5**, **6**, and **7**, were found to be ineffective under the optimized conditions (Scheme 1).

To investigate the effect of the MPvS-DG for the unactivated primary β -C(sp³)–H oxidation, a wide variety of MPyS-N-amides having a $1^{\circ}-\beta$ -C-H bond were subjected to the optimized catalytic conditions at rt. Table 1 summarizes the scope and limitations of these studies. The desired monoacetoxylation product 3a was obtained in 80% yield from **2a** in 14 h. The β -C(sp³)–H bond was exclusively oxidized leaving the γ -C(sp³)–H unaffected,¹⁵ producing 3b in 82% yield. Interestingly, chloro and bromo substitutions on an aliphatic chain survived, delivering 3c and 3d effectively; in contrast oxidation of β . β' dichloro containing amide 2e proceeded sluggishly even at 60 °C. The 2°-benzylic β -C(sp³)–H bonds and the more reactive aromatic C-H bonds were inert to the reaction conditions; the desired oxidation products 3f-i were furnished in good yields. Functional groups on the aromatic ring, including nitro (3g), bromo (3h), and ether (3i), were unaffected. Amides derived from 2-methylcyclohexane carboxylic acids underwent β -acetoxylation successfully (3k). The ester functional group did not affect the reaction productivity, furnishing 3l in an appreciable yield in Ac₂O. Pleasingly, a good amount of β , β' -diacetoxylation product 4a resulted from 3a, when the reaction was performed in an AcOH and Ac₂O mixture.

The catalytic conditions were next surveyed to examine the oxidation of β -C(sp³)–H bonds of MPyS-*N*-amides bearing α -C–H bonds. In general, the α -C–H is prone to undergo the β –H elimination with the involvement of either the Saegusa-type process or the cyclopalladated intermediates.¹⁷ However, the decrease in α -substitutions causing a sluggish reaction and poor product yield was observed. To overcome this problem, oxidations of **2m**–**2o** were therefore conducted at 60 °C. Moderate to good yields of the desired β -C–H acetoxylated products **3m**–**3o** were isolated. The β -H elimination products, possibly obtained from the cyclopalladated intermediates, were not detected.^{17a}

The β , β' -dihydroxycarboxylic acids are valuable precursors to the functionalized cyclic carbonates.^{18a} These cyclic carbonate monomers are used for the production of

(16) (a) Nadres, E. T.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 7.
(b) Ano, Y.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 12984. (c) Hasegawa, N.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 8070. (d) He, G.; Chen, G. Angew. Chem., Int. Ed. 2011, 50, 5192. (e) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.

(17) (a) Giri, R.; Maugel, N.; Foxman, B. M.; Yu, J.-Q. Organometallics **2008**, *27*, 1667. (b) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. **1978**, *43*, 1011.

⁽⁹⁾ Simmons, E. M.; Hartwig, J. F. Nature 2012, 483, 70.

⁽¹⁰⁾ Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Chem.-Eur. J 2012, 18, 5541.

⁽¹¹⁾ Mancheño, O. G.; Bolm, C. Chem.-Eur. J. 2007, 13, 6674.

^{(12) (}a) Rubia, A. G.; Urones, B.; Arrayás, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2011, 50, 10927. (b) Emmert, M. H.; Cook, A. K.;
Xie, Y. J.; Sanford, M. S. Angew. Chem., Int. Ed. 2011, 50, 9409. (c) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.

⁽¹³⁾ Zhang, S. Y.; He, G.; Zhao, Y.; Wright, K.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2012, 134, 7313.

⁽¹⁴⁾ For more details, see the Supporting Information.

⁽¹⁵⁾ Oxidations of the 1°-acidic- α -H of **8** and the 1°- γ -H of **9** were unsuccessful.

Table 1. Acetoxylation of $1^{\circ}-\beta$ -C(sp³)-H Bonds of Amides^{*a,b*}

^{*a*} Reaction conditions: **2**(0.5 mmol), Pd(OAc)₂(5 mol %), PhI(OAc)₂ (0.75 mmol), AcOH (1.5 mL) at rt. ^{*b*} Isolated yields. Recovered starting material is indicated in parentheses. ^{*c*} Reaction was carried out at 60 °C. ^{*d*} **2e** (100 mg) was employed. ^{*e*} Bulk scale reaction of **2j** (1.50 g) was performed. ^{*f*} 10 mol % of Pd(OAc)₂ was introduced; Ac₂O was used as solvent. ^{*g*} Mixture of AcOH and Ac₂O (1:1) was used.

biodegradable and biocompatible polymers.^{18b} Hydrolysis of **4a** would generate β , β' -dihydroxycarboxylic acids. To obtain **4a** from **2a**, the diacetoxylation of the primary β , β' -C(sp³)-H bonds of amides was therefore investigated. Excellent conversion of **2a** to **3a** and **4a** was observed under the modified conditions [Pd(OAc)₂ (10 mol %), PhI(OAc)₂ (3.0 equiv) in AcOH/Ac₂O at 70 °C] as shown in Table 2. Following this method, **4b**, **4c**, **4h**, and **4j** were isolated in 56–78% yields.

It was speculated that the acetate moiety from the PhI- $(OAc)_2$ or AcOH was involved in the formation of the C-O bond. To study the role of the oxidant in this transformation, **2a** was reacted with PhI(OPiv)₂ in the

Table 2. Direct β,β' -Di-acetoxylation of Primary β,β' -C(sp³)-H Bonds of Amides^{*a,b*}

^{*a*} Reaction conditions: **2** (0.25 mmol), Pd(OAc)₂ (10 mol %), PhI-(OAc)₂ (0.75 mmol), AcOH/Ac₂O (1:1, 1.5 mL) at 70 °C. ^{*b*} Isolated yields. Yield of the monoacetoxylation product is given in parentheses.

presence of $Pd(OAc)_2$ in AcOH. No trace of the -OPiv containing C–H oxidation product was detected by ¹H NMR; rather **3a** was exclusively formed in 81% yield (entry 1, Table 3). In contrast, this reaction did not proceed in the absence of oxidant.¹⁴ The effect of various carboxylic acid solvents was next examined. The carboxylate groups

Table 3. Acyloxylation of $1^{\circ}-\beta$ -C(sp³)-H Bond of Amides^{*a*}

Me S	0 N H 2a	/le Pd(`Me ^{PhI(O}	OAc) ₂ (5 COR ¹) ₂ (R ² COOI	mol %) (1.5 equiv) H, rt	$\overset{Me_{3}}{\swarrow}^{U}_{N} \overset{V}{R^{2}}_{R^{2}}$	Me Me Me
entry	\mathbb{R}^1	\mathbb{R}^2	<i>t</i> (h)	R ² (major)	3/10	yield $(\%)^b$
1	<i>t</i> -Bu	CH_3	30	CH_3	3a	81(13)
2	CH_3	${ m CD_3}^c$	12	CD_3	10a	68(20)
3	CH_3	\mathbf{Et}	32	\mathbf{Et}	10b	59(26)
4	CH_3	n-Pr	30	$n ext{-}\Pr$	10c	$58(21)^{d,e}$
5	CH_3	$iso\operatorname{-Pr}$	26	$iso\operatorname{-Pr}$	10d	$54(30)^{d,e}$

^{*a*} Reaction conditions: **2a** (100 mg, 0.42 mmol), Pd(OAc)₂ (5 mol %), PhI(OAc)₂ (0.63 mmol), R²COOH (1.25 mL) at rt. ^{*b*} Isolated yields. Yield of the recovered **2a** shown in parentheses. ^{*c*} CD₃COOD was used as solvent. ^{*d*} Reaction performed at 65 °C. ^{*e*} Yield of the nonseparable mixture of **10** and **2a**.

CD₃COO-, EtCOO-, *n*-PrCOO-, and *iso*-PrCOOfrom the corresponding carboxylic acids were successfully incorporated into the oxidation products, producing 10a-din good yields (entries 2-5).^{5d,i} It appeared that the

^{(18) (}a) Sanders, D. P.; Fukushima, K.; Coady, D. J.; Nelson, A.; Fujiwara, M.; Yasumoto, M.; Hedrick, J. L. J. Am. Chem. Soc. 2010, 132, 14724. (b) Jerome, C.; Lecomte, P. Adv. Drug Delivery Rev. 2008, 60, 1056.

^{(19) (}a) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. **2010**, *110*, 824. (b) See also ref 1d.

carboxylic acid solvent was responsible for the C–O bond formation, while the oxidant kept the catalytic cycle active.

Based on the discussed Pd-catalyzed alkane C–H oxidation and the results of the β -C(sp³)–H acyloxylation shown in Table 3, the catalytic cycle in Scheme 2 is proposed with the involvement of the Pd^{II} and Pd^{IV} species.¹⁹ The bichelated Pd^{II} species, generated in situ via the chelation of pyridine and the sulfoximine N-atom to Pd(OAc)₂, activates the 1°- β -C(sp³)–H of MPyS-*N*-amide at rt and produces the [5,5]-fused bicyclic cyclopalladated intermediate **11**. Following this, oxidation of the Pd^{II}-species of **11** with PhI(OAc)₂ or PhI(OCOR)₂, obtained through the ligand exchange between PhI(OAc)₂ and carboxylic acid, delivers the Pd^{IV} species **12**.^{20,21} Finally reductive elimination of **12** delivers

Table 4. Recovery of the MPyS Directing Group^{a,b}

	$\begin{array}{c} Me O \\ S \\ N \\ 3 \\ ACO \end{array} \xrightarrow{R^1} \begin{array}{c} 2(N) HCI \\ 50 \ ^{\circ}C, t \ (h) \end{array}$	Q V N	_Me S_NH + 1	$ \begin{array}{c c} 0 & OH \\ HO & & \\ 13 & R^1 & R^2 \end{array} $
entry	3	<i>t</i> (h)	yield of 1	yield of 13
1	3a , $R^1 = R^2 = Me$	3	87	88 (\$215/1 g)
2	$3\mathbf{j}, \mathbf{R}^1 = \mathbf{Bn}, \mathbf{R}^2 = \mathbf{Me}$	6	87	90
3	$3\mathbf{k}, \mathbf{R}^1$ \mathbf{R}^2 = cyclohexyl	5	89	91

^{*a*} Reaction conditions: **3** (0.25 mmol), 1 mL of 2 N HCl at 50 o C. ^{*b*} Isolated yields. Bn = benzyl.

the desired β -acyloxylated product **3** and the active Pd^{II} species. Alternatively the oxidation could also proceed with the involvement of a Pd(III) intermediate.²²

- (20) (a) Deprez, N. R.; Sanford, M. S. *Inorg. Chem.* 2007, *46*, 1924.
 (b) Dick, A. R.; Kampf, J. W.; Sanford, M. S. *J. Am. Chem. Soc.* 2005, *127*, 12790.
- (21) Koposov, A. Y.; Boyarskikh, V. V.; Zhdankin, V. V. Org. Lett. 2004, 6, 3613.

(22) (a) Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. **2009**, 131, 17050. (b) Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. **2009**, 131, 11234.

(23) (a) Ihara, H.; Koyanagi, M.; Suginome, M. Org. Lett. 2011, 13, 2662. (b) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502.

(24) CAS No for 14a: 4835-90-9; Aldrich Catalogue 2011–2012.
(25) (a) Jun, M.; Foote, C.; Lv, J.; Neal, B.; Patel, A.; Nicholls, S. J.;

Grobbee, D. E.; Cass, A.; Chalmers, J.; Perkovic, V. *Lancet* 2010, 375, 1875. (b) Steiner, G. *Diabetes Vasc. Dis. Res.* 2007, 4, 368.

Facile cleavage of the directing group from the oxidation products and the successful recovery of the MPyS-moiety would broaden the synthetic versatility of this strategy.^{16b,23} Pleasingly, the MPyS-containing amide **3a** was hydrolyzed with HCl (2 N) at 50 °C in 3 h (entry 1, Table 4). The desired 3-hydroxy-2,2-dimethyl-propanoic acid **13a** (215 \$/1 g; Aldrich)²⁴ was extracted from the crude reaction mixture in 88% yield. Following this procedure, various β -hydroxycarboxylic acids **13j** and **13k** were obtained with ease (entries 2 and 3). The precious MPyS-DG was readily isolated from the acidic mother liquor in excellent yields.¹⁴

Finally, potential synthetic application of this strategy was demonstrated performing Pd-catalyzed unactivated primary β -C(sp³)–H acetoxylation of drug derivatives (Figure 1). The fibrate-based drugs gemfibrozil and clofibrate are effective in reducing the cardiovascular risk factors associated with type 2 diabetics.²⁵ Gratifyingly, reaction of MPyS-bearing amides derived from gemfibrozil and clofibrate, under the optimized conditions, furnished the desired β -C(sp³)–H acetoxylation products **14** and **15** in 66% and 51% yield, respectively.¹⁴

Figure 1. $1^{\circ}-\beta$ -C(sp³)-H Acetoxylation of drug derivatives.

In conclusion, we have developed a novel MPyS directing group that is functional in the highly selective acetoxylation of the unactivated 1°- β -C(sp³)–H of MPyS-*N*-amides at rt. The catalytic conditions are able to tolerate various functional groups with a broad reaction scope, making them suitable for use in the synthesis of drug derivatives. The process also allows the formation of the β , β' -diacetoxylation products. The facile cleavage and easy recovery of the robust MPyS-DG makes the present protocol highly useful. Generalization of MPyS-DG for other C–H functionalizations, unraveling of mechanistic details, diastereoselective C(sp³)–H functionalizations, and investigation of the novel synthetic applications are being actively pursued.

Acknowledgment. This research was supported by the DST (Grant No. SR/S1/OC-34/2009). R.K.R. and M.R.Y. thank CSIR, India for fellowship. We thank Mr. P. Sanphui (University of Hyderabad) for the X-ray crystal-lographic analysis.

Supporting Information Available. Detailed experimental procedures, spectra, and X-ray data. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.